Late Cut Arable Silage for Corncrake
What was the Purpose?

- Record harvesting techniques of arable silage in relation to breeding corncrake.

- Assess the potential of Late cut arable silage as a future option in SRDP.

- Gauge the significance of late cut arable silage in providing areas of refuge for corncrake.

- The recording of harvesting techniques (machinery, cutting dates, speed), the number of corncrake present, any interventions required.
What were the results?

- Corncrake were recorded in 10.8% of plots being harvested in this study.
- The late and prolonged harvesting period in 2011 entailed that un-harvested crops were still standing into October.
- This would have provided areas of refuge cover for corncrake during the study period (15th Aug to 14th Sept).
What were the results?

- 7 corncrake were recorded - two from plots harvested in late Aug (23rd, 29th) and five in Sept (1st, 8th).
- Breeding status was estimated as:
 - 1 chick (10-15 days old)
 - 1 chick (20-25 days old)
 - 2 fledged juveniles
 - 1 adult
 - 2 birds of unconfirmed status
- An additional 20 corncrake were reported by crofters from 14 plots.
- One of these birds was reported as ‘small and dark brown’ being harassed by gulls and which ran for cover under the cut corn (14th Sept).
- The total number of corncrake confirmed was twenty-five from sixty-one plots (40%).
- Three out of the five plots were adjacent to plots which had already been harvested.
How can late cut arable silage help?

- Refuge cover is not readily available once the grass silage has been harvested and corn harvest is under-way.
- Alternative cover may be offered through grassy areas or fallow plots though these are sub-optimum.
1. Fieldworker alerts driver to juvenile corncrake stood at edge of crop. Corncrake moves back into cover of crop.

2. Juvenile corncrake breaks cover and runs into stubble field - runs back into crop. Mower is stopped - search for corncrake.

3. Corncrake moves out from under cut corn and back into standing crop.

4. Juvenile corncrake runs across stubble field and takes cover in grassy bank.
5. On last cut second juvenile corncrake flies across cut field and hides under a bale before running to cover in grass margin.
1. Fieldworker alerts driver to juvenile corncrake. Corncrake breaks cover and runs back into weedy outer edge of crop.

2. Weedy edge of crop is checked for corncrake. Driver continues to remove last edge of crop avoiding weedy area.

3. Fieldworker alerts driver to juvenile corncrake which breaks cover and hides in stubble.
The Harvest

- 87% of the plots studied were harvested in a corncrake friendly way (Centre-out or Side-to-side).

- The speed of harvesting works (tractor sideway/forward speeds) was well above the recorded speeds for the slowest and youngest broods.

- The rapidity of harvesting operations (mowing, turning, baling) could pose an issue if adjacent refuge habitat is not available.

- Common gulls were always present during the harvesting process.

- Quality of adjacent cover becomes more critical at later stages of the harvesting period.
Conclusions

- This study highlighted that corncrake (chicks, unfledged juveniles, adults) are still present in un-harvested corn as late as the middle of September.

- The introduction of late cutting dates for arable silage under the ‘Cropped Machair’ SRDP option and as trailed by the Machair LIFE+ Project will benefit corncrake (aid the successful fledging of chicks; provide refuge cover for moulting adults).

- To ensure that arable silage plots continue to be harvested in a ‘wildlife friendly’ way under SRDP, this requirement should be included in the detail of ‘Cropped Machair’ prescription.